
Proceedings of the 11th Symposium on Applied Science, Business & Industrial Research – 2019

ISSN 2279-1558, ISBN 978-955-7442-27-3

25

Implementing a Data Infrastructure for Telecommunication Provider: A Case Study

Vithanage LS, Vidanagama VGTN

Department of Computing and Information Systems, Wayamba University of Sri Lanka

lisharanline.ls@gmail.com

ABSTRACT

Data infrastructure is the key asset of the Telecom service provider to manage its operations.

This paper showcases a case study with Design, Development and Implementation of a Data

Infrastructure for a mobile operator to handle massive input data load from dispersed data sources

in a near real time manner without any data loss in order to facilitate analytics related works with

visualizations to understand customer behaviours in operators region.

Keywords: Analytic, Data infrastructure, Massive input data, Near real time

1 INTRODUCTION

In Kenyan region, the second largest

Telecommunication (Telco) provider needed

an infrastructure to manage huge amounts of

user data with zero data loss in real time.

Data is the most important asset for Telco

providers because every call, messages,

voice mails generates data. If a data loss

occurs, the operator will be unable to get

clear idea about customer behaviors. The

case study involves the Design,

Development and Implementation of a Data

Infrastructure in handling massive input data

load from dispersed data sources in a near

real time manner; in order to facilitate

analytics related work.

There are a number of technologies used

to implement this architecture. The

implementation also requires all data to be

visualized. Some data need to be visualized

in real time; so, the architecture needs to

handle all data in real time. This paper will

cover the Technology, methodology and

architecture requirements in the above

sections.

1.1 Problem Definition

The second largest telecommunication

provider in Kenya region has a huge

customer base with them. One of the largest

telco software providers in Sri Lanka

created two software products for their

requirement. They were Voice Mail Service

(VMS) and Voice Short Message Service

(VSMS). These systems generate huge Call

Detail Records (CDR‟s) because of their

customer base of 200000+ average active

users in every second. These active users are

generating 45,000 CDR‟s per second so, that

is a huge amount of data per second. The

data gathering success rate needs to be

100% because if any data lose happens, that

will directly affect billing and pricing.

The clients need highly scalable fault

tolerance data architecture to manage their

operations. Normal relational databases are

inefficient for this kind of situation because

when the database size increases, the data

queries get slower, or might even won‟t be

executed due to process complications.

Thus, there has to be a good database and

data stream processors to manage the

database.

The telco provider itself didn‟t have a

proper architecture for this kind of situation;

therefore, a new architecture had to be

developed to suit their needs. This provider

has a larger customer base compared to

others thus, for the Telco software provider;

it was a challenge to develop such a thing.

For other providers the Common Reporting

System (CRS) architecture had only apache

spark, apache flume and MySQL. But for

mailto:lisharanline.ls@gmail.com

Vithanage & Vidanagama

26

this kind of problem that architecture was

not enough.

Figure 1: Early CRS (common Reporting System)

Architecture

In this architecture, it obtains the data

from the log files through Apache flume and

the spark stream will save the data into

MariaDB table. This architecture is working

fine with small scale data loads. But when it

comes to the massive data load this will fail.

The MariaDB also gets slow when the data

input is really quick (Kafka Architecture,

2019).

2 DESIGN METHODOLOGY

In Telco provider side they had two sites

in Kenya which needed the new application.

It was planned to manage the entire data

load with one database cluster. Several

technologies were chosen to implement such

a data infrastructure.

 Apache Flume

 Apache Kafka (cluster)

 Apache Spark (cluster)

 Cassandra (cluster)

 MariaDB

 Grafana

 Java

 Python

Apache Mesos is a resource

management tool and that is optional for our

need because Spark cluster performed well

in our scenario. Spark cluster worked for

both streaming jobs as well as batch

processing jobs. This tool required High

memory (RAM) in order to perform well

(The Distributed SQL Blog, 2019).

Our proposed design was pretty straight

forward. We proposed our high-level

Architecture as follows:

Figure 2: High-level Architecture of System

This Architecture could manage a huge

amount of stream data and also manage a

batch of data hourly. Java was used to

develop stream processor and batch

processors (Vaseekaran, 2019). The stream

processors were used to store data to

Cassandra database in real-time. Batch

processors were used to retrieve data from

Cassandra table and aggregate those data to

get information and store it in MariaDB

(MariaDB (MySQL), 2019).

There were two central sites of the Telco

provider. For each site there were a separate

Kafka cluster and Spark cluster. There was

one Flume agent for one application server

to pass data to Kafka cluster from

application server. There was only one

Cassandra cluster for both sites. Both Spark

Streams were Inserting data into Cassandra

cluster (Apache Kafka, 2019).

MariaDB was installed with master-

master configuration to ensure that even

when one database was crashed there would

be no loss in data. Grafana is the

https://medium.com/
https://dzone.com/

IMPLEMENTING A DATA INFRASTRUCTURE FOR TELECOMMUNICATION PROVIDER: A CASE

STUDY

27

visualization tool that was used to visualize

the aggregated data. It was a time series

visualization tool to visualize results

according to a timeframe

(http://msutic.blogspot.com, 2015).

Figure 3: One Site Configuration

3 SUMMARY OF FINDINGS/

RESULTS

Results of this system contain two parts

namely Stream processor results and Batch

processor results. To measure Stream

processor results it was required to confirm

that all data were stored in Cassandra table

without any loss. Batch processor results

were evaluated using the Grafana dashboard

Overall performance was measured

based on load testing using generated CDR

records. These records were generated

continuously so the DataStream‟s matched

for 45,000+ CDR‟s per second. The memory

usage of the architecture was considered as

Apache spark was a high memory usage

application. But with the given

configurations, the system performed

exceptionally well.

Grafana Dashboards also provided very

high accurate results of the given data.

Figure 4: Sample Grafana dashboard -1

(852 x 252 px)

Figure 5: Sample Grafana dashboard -1

(852 x 252 px)

4 CONCLUSION AND

RECOMMENDATION

Implementation of Data infrastructure for

safaricom was developed and completed in

16-weeks of time, similarly over the same

period Stream Processors Batch Processors

were also completed and tested. The end

result was to implement the infrastructure on

Safaricom and test with live data. It worked

fine in live environment. The systems

received massive data load per second, but

the proposed architecture managed that load

smoothly.

Although the current system shows good

performance, there are areas of risk which

may require solutions in future.

1. If flume agent malfunctions in the

application server, there will be a break

in data stream so the application server

data will not come to the Cassandra

table.

http://msutic.blogspot.com/

Vithanage & Vidanagama

28

Figure 6: Problem in flume

2. In Spark documentation they have

explained that Spark default cluster is

not suitable for production environment.

They recommend that Mesos is good to

manage resources. But in our case Spark

inbuilt cluster works fine. Sometimes,

this might make some issues in later

stage.

3. If the CDR per second count will

increase later; for example, 100000+

CDR per second. Spark Streaming is not

the answer for that. We have to replace

Apache flink for Stream processing jobs.

4. MariaDB is used as a Master - Master

replication. So, every aggregate data is

replicating again. This can be waste of

data in some point. We can use mariaDB

cluster to utilize the resources.

REFERENCES

 Apache Kafka - Dzone Refcardz, 2019,

[ONLINE] Available at:

https://dzone.com/refcardz/apache-

kafka?chapter=1.

 Vaseekaran, G. 2019, Big Data Battle:

Batch Processing vs Stream Processing

[ONLINE] Available at:

https://medium.com/@gowthamy/big-

data-battle-batch-processing-vs-stream-

processing-5d94600d8103.

 Kafka Architecture, (2019), Kafka

Architecture, [ONLINE] Available at:

http://cloudurable.com/blog/kafka-

architecture/index.html.

 MariaDB (MySQL) Master-Master

Replication | Marko Sutic's Database

Blog, 2019, MariaDB (MySQL) Master-

Master Replication | Marko Sutic's

Database Blog, [ONLINE] Available at:

http://msutic.blogspot.com/2015/02/mari

adbmysql-master-master-

replication.html.

 The Distributed SQL Blog, 2019,

Apache Cassandra: The Truth behind

Tunable Consistency, Lightweight

Transactions & Secondary Indexes - The

Distributed SQL Blog, [ONLINE]

Available at:

https://blog.yugabyte.com/apache-

cassandra-lightweight-transactions-

secondary-indexes-tunable-consistency/.

https://dzone.com/refcardz/apache-kafka?chapter=1
https://dzone.com/refcardz/apache-kafka?chapter=1
https://medium.com/@gowthamy/big-data-battle-batch-processing-vs-stream-processing-5d94600d8103
https://medium.com/@gowthamy/big-data-battle-batch-processing-vs-stream-processing-5d94600d8103
https://medium.com/@gowthamy/big-data-battle-batch-processing-vs-stream-processing-5d94600d8103
http://cloudurable.com/blog/kafka-architecture/index.html
http://cloudurable.com/blog/kafka-architecture/index.html
http://msutic.blogspot.com/2015/02/mariadbmysql-master-master-replication.html
http://msutic.blogspot.com/2015/02/mariadbmysql-master-master-replication.html
http://msutic.blogspot.com/2015/02/mariadbmysql-master-master-replication.html
https://blog.yugabyte.com/apache-cassandra-lightweight-transactions-secondary-indexes-tunable-consistency/
https://blog.yugabyte.com/apache-cassandra-lightweight-transactions-secondary-indexes-tunable-consistency/
https://blog.yugabyte.com/apache-cassandra-lightweight-transactions-secondary-indexes-tunable-consistency/

	Proceedings of ASBIRES 2019_Part39
	Proceedings of ASBIRES 2019_Part40
	Proceedings of ASBIRES 2019_Part41
	Proceedings of ASBIRES 2019_Part42

